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Abstract

A new algorithm that constructs a continuous force field interpolated in time is
proposed for resolving existing difficulties in numerical methods for ray-tracing.
This new method has improved accuracy, but with the same degree of algebraic
complexity compared to Kaisers method[1].

INTRODUCTION

A new ray-tracing algorithm that utilizes time-dependent interpolation of the
force in a differentiable potential field is proposed. The new method uses
known boundary values of force terms to constrain the solution, therefore is
of order higher accuracy compared to Kaiser’s method [1] and has the same
degree of numerical complexity. The new method also provides continuation
of force and an exact energy conservation where the ray travels across cell
boundaries. When the ray reaches the critical surface, the turning of ray is
treated naturally. Furthermore, because of continuity of the force field con-
structed with the new method, Snell’s Law required by the Kaiser’s method
to be applied at cell boundary when jump of potential field occurs is not re-
quired with the new method. Thus, no ray reflecting/splitting will occur with
the new method. Numerical examples show the new method generates promis-
ing ray-tracing solutions with excellent agreement to the exact solution for a
nonlinear potential field.

With the proposed new method, the force that a ray experienced while trav-
eling through a cell is not a constant, but linearly interpolated with the times
when the ray intersects the cell boundary, and is consistent with their values on
cell boundary, thus is continuous across cell boundaries. The time for a ray to
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Fig. 1. Ray-tracing between a pair of cell walls (a single cell).

travel travel through a given cell is back-solved with and energy conservation
at the exiting point and the time integrated position at it.

In this report, the mathematical approach with proposed method is explained
at first. After that, numerical examples are given in one-dimensional geome-
try to demonstrate the improved accuracy of the proposed method over the
method in[1]. Compared to the analytical solution for ray-tracing in a given
nonlinear force field, with varying the initial direction of the ray, keeping the
initial speed to one, the new method has shown more accurate solutions with
time traveled by the ray and the position of the trajectory of the ray. Better
agreement to the exact solution in the case that the ray turns back in the
potential field is also shown.

THE PROPOSED METHOD vs. KAISER’S METHOD

The trace of a particle with a unity mass (a ray) traveling in a potential field
V (~r) is being considered here. Assuming the ray enters a cell C from point
A with velocity ~uA and exits at point B with the velocity ~uB, we are going
to derive the trace of the ray and examine energy conservation where the ray
enters the next cell.
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The equation of motion of the particle (or ray) is by Newton’s second law that

d2~r

dt2
= ~g(~r) = −~∇V (~r). (1)

where ~g is gravity (the force), the gradient of the field potential V (~r). A first
integral is easy to obtain, which is the energy conservation law that

1

2
u2 + V (~r) = const. (2)

With Kaiser’s method, a constant force ~g (gradient of the potential) is assumed
inside cell C and the solution is

~u = ~uA + ~gt,

~r = ~rA + ~u0t +
1

2
~gt2.

Let T be the time it takes for the ray to reach the exiting point B, then at
point B, one has

~uB = ~uA + ~gT,

~rB = ~rA + ~uAT +
1

2
~gT 2.

However, with the proposed method, the force is an interpolation of its values
at points A and B and the force at cell center

~g = (1 − 2t

T
)~gA +

2t

T
(1 + δ)~gc, (3)

for 0 ≤ t ≤ T/2, and

~g = 2(1 − t

T
)(1 + δ)~gc + (

2t

T
− 1)~gB, (4)

for T/2 ≤ t ≤ 1.

Where the term (1+ δ)~gc is the force applied to the ray at the half-travel time
T/2, δ is considered as a correction to the force at cell center because at half
time, a ray does not necessarily pass the cell center. δ is to be determined with
checking energy conservation at cell boundary.
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A time integration of the governing equations for the first half-travel time
provides

~r = ~rA + ~uAt + ~gA(
t2

2
− t3

3T
) +

1 + δ

3
~gc

t3

T
, (5)

~u = ~uA + ~gAt(1 − t

T
) +

1 + δ

T
~gct

2.

At half-time t = T/2, one has

~rT/2 = ~rA +
~uA

2
T +

1

12
~gAT 2 +

1 + δ

24
~gcT

2,

~uT/2 = ~ua +
~gA

4
T +

1 + δ

4
~gcT.

Then we are able to integrate for T/2 ≤ t ≤ T and obtain

~rB = ~rT = ~rA + ~uAT +
5~gA + ~gB

24
T 2 +

1 + δ

4
~gcT

2, (6)

~uB = ~uT =
~gA + ~gB

4
+

1 + δ

2
~gc + ~ua.

Now we take a look of energy conservation at rB, we have the total dynamical
energy

eA =
|uA|2

2
+ VA, eB =

|uB|2
2

+ VB,

enforcing energy conservation eA − eB = 0 generates the equation for (T, δ)
that

(~gA + ~gB + 2(1 + δ)~gc)[8~uA + (~gA + ~gB + 2(1 + δ)~gc)T ] = 32(VA − VB).

This equation, coupled with other conditions at ~rB and ~rT/2, will determine
the solution of the system. For example, if ~rB is on a bi-linear face defined by
~r1, ~r2, ~r3, ~r4, then the monotonic parametric interpolation ~rB = Σkφk(r, s)~rk,
VB = Σkφk(r, s)Vk (r, s are the parametric coordinate) will provide additional
equations for a closure of the algebraic system with variables (r, s, δ, T ).
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Fig. 2. Ray-tracing between a pair of cell walls (a single cell) with a = 0.25, α = 2.

Fig. 3. Ray-tracing between a pair of cell walls (a single cell) with a = 0.50, α = 2.
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Fig. 4. Ray-tracing between a pair of cell walls (a single cell) with a = 0.75, α = 2.

Fig. 5. Time history of ray-tracing between a pair of cell walls (a single cell) with
a = 1, α = 2. Solution of ray-trace with the new method almost overlaps the exact
solution.
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NUMERICAL TESTS

The test problem we have chosen is ray-tracing in a potential field varying in
the x-direction

V (~r) =
1

2
(1 − x)α, (α > 1, x ≥ 0), (7)

when 0 ≤ x ≥ 1, V = 0 when x > 1. The mesh is one-dimensional and set
between [0, 1] in the x-direction. The ray enters the mesh at point A : ~r0 =
(1, 0) with velocity ~u0 = (−a, b) where a2 + b2 = 1, (a, b > 0). Therefore, the
total dynamical energy of the ray (considered as a particle of unit mass) is
1/2 because at the entering point A, the potential energy is zero.

The force (acceleration or gravitation) term can be derived by direct differen-
tiation

~f(~r) = −~∇V (~r) =
1

2
α(1 − x)α−1î.

The above problem can be exactly integrated in some simple cases.

For α = 1, one has

x = 1 − at +
1

4
t2, y = bt. (8)

The time take to travel in the potential field is T = 4a, and the exiting point
will be at B : ~r1 = (1, 4ab), with the exiting velocity ~uB = (a, b).

For α = 2, one has

x = 1 − a × sin(t), y = bt. (9)

The time takes to travel through the potential field is T = π (if the ray does
not make a turn, and arrives the other side), and the exiting point will be at
B : ~r1 = (1, πb) with the exiting velocity ~uB = (a, b).

To start with, let there be N cells in the x-direction, with evenly spaced mesh
lines between (0, 1). The width of each cell is ∆x = 1/N. For cell i, (i =
1, 2, 3, ...N), its left face is xleft = (i− 1)∆x and its right face is xright = i∆x.
For the purpose of demonstration, we discuss the most simple cases of N = 1
and N = 2.
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We express the force ~g with a linear interpolation of theoretical values at
boundary. The case of constant force with α = 1 is trivial, both Kaiser’s
method and the new method exactly agrees with the theory. We will pay
attention to the nontrivial case α = 2.

WITH A SINGLE CELL N = 1

First of all, we let N = 1 and compare Kaiser’s solution and new solution with
the exact solution. In this case the variation of density gradient is O(1), the
numerical methods are supposed to be valid only when the said variation is
o(1).

KAISER’s METHOD

Kaiser’s method assumes a constant force. In this case which is expressed by
−(V (1)−V (0))̂i divided by the cell width 1. Therefore, ~g = î/2 for α = 2, the
value we choose. This force vanishes in the case α = 1. The ray then arrives at
the other side of cell at the time T = 4a, and the exiting point ~r1 = (1, 4ab),
with an exit velocity ~u1 = (a, b).

THE NEW METHOD

We assume the boundary value of the force ~g is specified. The force in the cell
center is obtained with a linear interpolation of boundary values. Again, we
obtain ~gc = î/2 for α = 2. The equation of motion (5, 6) the become (with
~gB = 0.)

~g = (1 − 2t

T
)~gA +

2t

T
(1 + δ)~gc =

t

T
(1 + δ)̂i, (10)

for 0 ≤ t ≤ T/2, and

~g = 2(1 − t

T
)(1 + δ)~gc + (

2t

T
− 1)~gB = (1 − t

T
)(1 + δ)̂i, (11)

for T/2 ≤ t ≤ 1. We explicitly assumed that ~gB = 0 by knowing the exiting
point has zero force. The exiting point on cell boundary is to be determined.

By a direct time integration, we obtain that

xT/2 = 1 − a

2
T +

(1 + δ)

48
T 2,
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uT/2 = −a +
(1 + δ)

8
T

at the mid-point t = T/2, and

xexit = 1 − aT +
T 2

8
(1 + δ), (12)

uexit = −a +
T

4
(1 + δ).

at the exiting point.

Energy conservation at the exiting point requires that uexit = a, this is exactly
satisfied by observing that xexit = 1 gives exactly energy conservation. Next
we try to determine δ. Considering that (1 + δ)̂i/2 be the force applied at
t = T/2 and is an linear interpolation of forces at boundary, we have a set of
equations to solve for T, δ that

(1 + δ)

2
=

a

2
T − (1 + δ)

48
T 2,

for the linearly interpolated force at the turning point, and

T (1 + δ) = 8a,

for energy conservation at the exiting point.

The algebraic solution is T = 2
√

3, surprisingly, not related to a. The value of
T is 3.464102, and is only 10% from the exact solution T = π. The solution
of δ is 4a/

√
3 − 1. The location of the turning point is xT/2 = 1 − aT/3 =

(1 − 1.154701a), compared to exact solution xT/2 = (1 − a), Kaiser’s solution
xT/2 = (1 − a2).

The above solution breaks down when a >
√

3/2 for xT/2 < 0, then we have
to consider the possibility for the ray to enter the other cell sharing the wall
x0 = 0. With analyzing the special case of a = 1, one still has

~f =
t

T
(1 + δ)̂i,

for 0 ≤ t ≤ T/2. However, for the later half of the path, we have

~f = (1 − t

T
)(1 + δ)̂i + (

2t

T
− 1)̂i.
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Fig. 6. Ray-tracing through three cell walls (double cells) with a = 0.25, α = 2.

Time integration generates

xT = 1 − T + (
1

6
+

δ

8
)T 2,

uT = −1 + (
1

2
+

δ

4
)T.

Because xT = 0 and uT = 0 (from energy conservation), one obtains T =√
21 − 3 = 1.58258. Then because the velocity becomes zero at the cell wall

x0 = 0, the ray will reverse its path with symmetry and the total time for the
ray to travel through the cell is texit = 2T = 3.165160, which is only 0.75% off
the exact solution texit = π.

Therefore in the case of N = 1, the quality of solution with the new method
is much better than Kaiser’s solution, not only with good accuracy, but also
with exactly conserved energy at the cell boundary and a correct treatment
on the critical surface. The ray-traces for the cases with a = 0.25, 0.5, 0.75,
and 1.0 are plotted in fig.2 through fig.5.
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Fig. 7. Ray-tracing through three cell walls (double cells) with α = 0.50, α = 2.

Fig. 8. Ray-tracing through three cell walls (double cells) with α = 0.75, α = 2.
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Fig. 9. Time history for ray-tracing through three cell walls (double cells) with
a = 1.0, α = 2. Solution of ray-trace with the new method almost overlaps the exact
solution.

WITH A PAIR OF CELLS

Then we consider the case N = 2 (keeping α = 2). For a fair comparison,
we again vary a with four values (1/4, 1/2, 3/4, 1) and compare Kaiser’s and
the new solution in every cases with the exact solution. The positions of cell
walls are set to (x0, x1, x2) = (0, 1/2, 1). The corresponding potential at these
positions are (V0, V1, V2) = (1/2, 1/8, 0) with α = 2. Cell i(i = 1, 2) is defined
by (xi−1, xi).

KAISER’s SOLUTION

The ray enters cell 2 first, the force in this cell is obtained by −(V2−V1)/(x2−
x1) = 1/4. One can directly write down the integral

x = 1 − at +
1

8
t2, y = bt. (13)

We first examine if there is a turning point in this cell. Since the x- velocity is
zero at the possible turning point, one finds that t = 4a at the turning point,
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therefore xt = 1 − 2a2, therefore, for a = 1/4, a = 1/2, the turning point may
be inside cell 2, in the remaining cases, the ray will enter cell 1 after first
traveled through cell 2.

Case 1: a = 1/4

For a = 1/4, the ray will never arrive the cell-wall x1 = 1/2 before exits
from x2 = 1, the solution is easily obtained that tturn = 1, xturn = 7/8, and
yturn = b =

√
15/4, then texit = 2, xexit = 1, and yexit = 2b = 2

√
15/4.

Case 2: a = 1/2

The case a = 1/2 is a little bit more interesting because turning point is on
the cell boundary x1 = 1/2. The motion of the ray before the turn is governed
by

x = 1 − t

2
+

1

8
t2, y = bt. (14)

At the turning point tturn = 2, xturn = 1/2, and yturn = btturn =
√

3. Because
dx/dy = 0 at the turning point, the ray is traveling along the cell boundary,
the next cell the ray enters has to be determined by the forces from both cells.

In this case because the force is always positive in î direction, the problem
is simple and the ray will return to cell 2 with entering velocity (0, b), the
ray-trace after turning can be easily integrated to obtain

x =
1

2
+

1

8
(t − 2)2, y = bt. (15)

When the ray exits the mesh at x2 = 1, we find that texit = 4, thus yexit =
4b = 2

√
3.

Case 3: a = 3/4

Our next case is with a = 3/4. Kaiser’s solution is then

x = 1 − 3t

4
+

1

8
t2, y = bt. (16)

At the exiting point x1 = 1/2, one finds texit = 3−
√

5, then yexit = (3−
√

5)b =
√

7
4

(3 −
√

5), and the exiting velocity is ~uexit = (−
√

5/4,
√

7/4). The ray will
enter cell 1.
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In cell 1, the force is determined by −(V1 −V0)/(x1 − x0) = 3̂i/4. Because the
mesh is only one-dimensional we are able to smoothly interpolate the values
of the potential function with a linear function inside a cell, and there is no
jump of potential across the boundary between the two cells.

The solution of ray-trace in cell 1 is then

x =
1

2
−

√
5

4
(t − 3 +

√
5) +

3

8
(t − 3 +

√
5)2, y = bt. (17)

At the turning point , the x-velocity becomes zero and we obtain tturn =
3 − 2

√
5/3 = 1.509288, thus xturn = 7/24. At the exiting point (on xexit =

x1 = 1/2), one has texit = 3 −
√

5/3, and ~uexit = (
√

5/4,
√

7/4).

Then the ray enters cell 2 again. The force in cell 2 is still î/2, then the trace
has the solution

x =
1

2
+

√
5

4
(t − 3 +

√
5

3
) +

1

8
(t − 3 +

√
5

3
)2, y = bt. (18)

When the ray exits the mesh at xexit = x2 = 1, one finds that texit = 3 −
2
√

5/3 +
√

17/3 = 2.88366, then yexit = bt = 1.907362. The exiting velocity is
then ~uexit = (3/4,

√
7/4).

Case 4: a = 1

The final case we decide to examine is a = 1, b = 0, the motion of the ray is
only one-dimensional. In cell 2, the force is î/4 therefore

x = 1 − t +
1

8
t2, y = 0. (19)

When ray exits cell 2 at xexit = x1 = 1/2, the travel-time across the cell is
texit = 4 − 2

√
3. The associated velocity is then ~uexit = (−

√
3/2, 0). Then the

ray enters cell 1 to continue travel under force 3̂i/4, the position of the ray is
then

x =
1

2
−

√
3

2
(t − texit) +

3

8
(t − texit)

2, y = 0. (20)

At the turning point dx/dt = 0 and one obtains tturn = 4(1−1/
√

3) = 1.690599
and xturn = 0. Then the ray starts coming back according to the law of motion

x =
3

8
(t − tturn)2 =

3

8
(t − 4 +

4√
3
)2. (21)
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and arrive at the shared cell boundary x1 = 1/2 at texit = 4 − 2/
√

3, with
velocity ~uexit = (

√
3/2, 0).

Then the ray continues traveling in cell 2 with

x =
1

2
+

√
3

2
(t − 4 +

2√
3
) +

1

2
(t − 4 +

2√
3
)2. (22)

When the ray arrives at xfinal = x2 = 1, one has tfinal = 8(1 − 1/
√

3) =
3.381198, and the final speed is ufinal = 1, and the travel of ray in the potential
field is completed.

The above derivations are for the Kaiser’s method for a pair of cells.

THE NEW SOLUTION

To utilize the new method, the values of V and ~∇V on cell boundary have to
be specified. A practical way to do this is, let V be defined on cell boundary,
then use a moving-least-squared operator for a fit of spatially neighboring
values of V . In this test case, the base function vector for the least-squared fit
can be set to (1, x, x2/2) to obtain exact function values on the cell boundaries,
or set to (1, x) for an accuracy of the second order. To be fair in comparison,
we use the rougher choice (1, x). On the mesh line x1 = 1/2, the value of
force is consistent with a central difference scheme if the weighting function
in the least-squared fit is constant, and we obtain the force at x1 with f1 =
−î(V2 − V0)/(x2 − x0) = î/2. On boundary of the mesh, exact value of force
is given that f0 = î at x0 = 0, and f2 = 0 at x2 = 1.

Case 1: with a turning point (a = 1/4)

We again examine first if there is a turning point in this cell. Because of the
symmetry with the problem, we will only examine first half path for possible
cases. We recall the new time-interpolated force that

~g = (1 − 2t

T
)~gA +

2t

T
(1 + δ)~gc, (23)

for 0 ≤ t ≤ T/2, and

~g = 2(1 − t

T
)(1 + δ)~gc + (

2t

T
− 1)~gB, (24)

for T/2 ≤ t ≤ 1.
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In cell 2, it is natural to take ~gc = î/4 for it is the average of boundary values.
If we assume the ray turns back without entering cell 1, since force at x2 = 1
is zero, we have

~g =
t

T
(1 + δ)(

î

2
), (25)

for 0 ≤ t ≤ T/2, and

~g = (1 − t

T
)(1 + δ)(

î

2
), (26)

for T/2 ≤ t ≤ T .

x = 1 − at + (1 + δ)
t3

12T
, (27)

for 0 ≤ x ≤ T/2, and

x = 1 − at + (1 + δ)(
t2

4
− t3

12T
− tT

8
+

T 2

48
), (28)

u = −a + (1 + δ)(
t

2
− t2

4T
− T

8
).

When ray exits at x2 = 1, one has

xT = 1 − aT

2
+ (1 + δ)

T 2

16
= 1,

uT = −a + (1 + δ)
T

8
.

At exiting point x2 = 1, energy conservation requires uT = a, this is consistent
with xT = 1 with T = 16a/(1 + δ).

Then, one finds that tturn = 8a/(1 + δ) and the turning point at xturn =
1 − 16a2/3(1 + δ). Therefore, at the turning point, the linearly interpolated

force will be ~fT/2 = 16a2/3(1 + δ). Then we have (1 + δ)̂i/4 = 16a2/3(1 + δ)

and the solution is 1 + δ = 8a/
√

3 and this gives the travel time T = 2
√

3 =
3.464102 is not a function of the entering velocity, as long as the turning
point is inside cell 2. Therefore, for a = 1/4, we have T = 2

√
3 = 3.464102

with xturn = 1 − 2a/
√

3 = 0.711325 inside cell 2, but for a ≥
√

3/4, the
corresponding solution will enter the other cell, after first traveled through
cell 2.
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Case 2: turning point touches cell wall (a = 1/2)

The above analysis does not necessarily mean that when a = 1/2 (which is
≥

√
3/4), the ray must enter cell 1, because at this moment the force term is

different by means that the force at x1 = 1/2 will contribute to the solution.
In the case a = 1/2 the force term in (eq. 3) and (eq. 4) will become (with
~ga = 0, ~gB = î/2, and ~gc = î/4)

~g =
t

T
(1 + δ)

î

2
, (29)

for 0 ≤ t ≤ T/2, and

~g = (1 − t

T
)(1 + δ)

î

2
+ (

2t

T
− 1)

î

2
. (30)

Time integration for the first half-time is unchanged because of the same force
term is applied. Then when the ray reaches the cell wall x1 = 1/2 at t = T ,
one has

xexit = 1 − T

2
+

T 2

12
+

δ

16
T 2 = x1 =

1

2
,

uexit = −1

2
+

T

4
+

δ

8
T.

Energy conservation at x1 = 1/2 requires that uexit = 0, therefore we are able
to solve the above system with T =

√
21−3 = 1.582576, and δ =

√
21/3−1 =

0.527525.

Since uT = 0 and the force is in the +î direction, the ray actually will not
enter cell 1. Instead, the ray will return to cell 2 and finish its travel in the
mesh at ttotal = 2T = 3.165152 by symmetry. This solution is vary close to the
exact solution that texact = π = 3.141593 by an relative error of only 0.75%.

Case 3: turning point in the next cell (a = 3/4)

Next we deal with the case that a = 3/4, still with the consideration that the
energy correction δ might not be zero, one has the force term in cell 2 that

~f =
t

T
(1 + δ)

î

2
,
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for the first half-way, and

~f =
t

T

î

2
+ δ(1 − t

T
)
î

2
,

for the next half-way.

With this different entering velocity, by time integration one finds that

x = 1 − 3

4
t +

1 + δ

12T
t3,

and at the end of first half way t = T/2, one finds

xT/2 = 1 − 3

8
T + (1 + δ)

T 2

96
,

uT/2 = −3

4
+

T

16
(1 + δ).

At the exiting point texit = T , xexit = x1 = 1/2 one has

xexit = 1 − 3

4
T +

T 2

12
+

δ

16
T 2,

uexit = −3

4
+

T

4
+

δ

8
T.

With energy conservation at x1 = 1/2, let λ = T/4 + δT/8, then one finds
λ2 − 3λ/2 + 1/4 = 0, then λ = (3 −

√
5)/4, and which makes uexit = −

√
5/4.

Because

xexit − uexit
T

2
= 1 − 3

8
T − T 2

24
,

this quadratic equation for T gives that T = 0.730006, δ = 0.0929472. Note
that the exact solution x = 1 − a × sin(t) gives T = sin−1(2/3) = 0.729728,
we see the relative error with the new method is only about 0.03%.

The ray then enters cell 1 with ~u = (−
√

5/4,
√

7/4). We assume that the ray
will make a turn in this cell then the force term with the new method applied
to this portion of ray-path is (with ~f1 = î/2 the force on the cell wall x1 = 1/2
and fc = (̂i + î/2)/2 = 3̂i/4 the average force in cell 1.

~f = (1 − 2
t

T
)
î

2
+ 2

t

T
(1 + δ)(

3

4
î),
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for the first half-way, and

~f = 2(1 − t

T
)(1 + δ)(

3

4
î) + (2

t

T
− 1)

î

2
,

for the next half-way.

The solution for 0 ≤ t ≤ T/2 is

x =
1

2
−

√
5

4
t +

t2

4
+

t3

T
(

1

12
+

δ

4
),

u = −
√

5

4
+

t

2
+

t2

T
(
1

4
+

3

4
δ).

At the turning point u = 0 (or t = T/2 by symmetry) and one has

xturn =
1

2
−

√
5

8
T +

7

96
T 2 +

δ

32
T 2,

uturn = −
√

5

4
+

T

16
(5 + 3δ) = 0.

then the solution after turning when the ray return to cell wall x1 = 1/2 will
be

xT =
1

2
−

√
5

8
T +

5

32
T 2 +

3

32
δT 2,

uT =
5

16
T +

3

16
δT.

The energy conservation requires that uT =
√

5/4. Then one observes that it
exactly gives xT = 1/2, and u = 0 at the turning point. Therefore the energy
conservation is not affected by the choice of δ, and we may choose δ = 0,
and have T = 4/

√
5 = 1.788854. Be aware that T here is the time takes

for the ray to travel through cell 1 only. Then the position of the turning
point is at xturn = 7/30 and the interpolated force there will be [(7/30)~f1 +

(8/30)~f0]/(x1 − x0) = (23/30)̂i = 0.7666667̂i, therefore at t = T/2, we have a

more accurate estimate of the force than 3/4̂i = 0.75̂i. Insert this value for ~fc

in the force term, one has

~f = (1 − 2
t

T
)
î

2
+ 2

t

T
(
23

30
i),
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for the first half-way, and

~f = 2(1 − t

T
)(

23

30
î) + (2

t

T
− 1)

î

2
,

for the next half-way.

Integrate the force terms through the turning point, one finds

uturn = −
√

5

4
+

19

60
T = 0.

Therefore an improved T = 15
√

5/19 = 1.765317 is obtained.

Then by symmetry, the motion after the ray re-enters cell 2 will exactly reverse
the solution before the ray enters cell 1 (in x- direction). We know the time
it takes will be 0.730006 and the total time of the travel will be 0.730006 +
1.765317 + 0.730006 = 3.225329, which is only about 2.7% from the exact
solution ttotal = π.

Case 4: the critical surface (a = 1)

The last case we decide to test is with a = 1. This case is simple because the
motion is only in the x-direction.

We write down the force term in cell 2 similarly to the case of a = 3/4 that

~f =
t

T
(1 + δ)

î

2
,

for the first half-way, and

~f =
t

T

î

2
+ δ(1 − t

T
)
î

2
,

for the next half-way.

With the entering velocity be (−1, 0), by time integration one finds that

x = 1 − t +
1 + δ

12T
t3,
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and at the end of first half way t = T/2, one finds

xT/2 = 1 − 1

2
T + (1 + δ)

T 2

96
,

uT/2 = −1 +
T

16
(1 + δ).

At the exiting point texit = T , xexit = x1 = 1/2 one has

xexit = 1 − T +
T 2

12
+

δ

16
T 2,

uexit = −1 +
T

4
+

δ

8
T.

Energy conservation at x1 = 1/2 requires that uexit = −
√

3/2 and the solution
is given by T = 0.523653 and δ = 0.0467936. Note that the exact solution is
T = sin−1(1/2) = π/6 = 0.523599 and the relative error is only 0.01%.

Then the ray enters cell 1 with velocity u = −
√

3/2, the force term will be

~f = (1 − 2
t

T
)
î

2
+ 2

t

T
(1 + δ)(

3

4
î),

for the first half-way, and

~f = 2(1 − t

T
)(1 + δ)(

3

4
î) + (2

t

T
− 1)

î

2
,

for the next half-way.

Because the ray will turn back to x1 = 1/2, the choice of δ shall not affect
energy conservation. We integrate the force term to the turning point (t =
T/2) and obtain

xturn =
1

2
−

√
3

4
T +

7

96
T 2,

uturn = −
√

3

2
+

5

16
T = 0.

Then obtain T = 8
5

√
3 = 2.771281, xturn = −7/50 = −0.14. This means that

the assumption of a turning point under the given force term is invalid and
the ray is going to arrive x0 = 0 under such a force.
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Then the force term has to include contribution from f0 = î with

~f = (1 − 2
t

T
)
î

2
+ 2

t

T
(1 + δ)(

3

4
î),

for the first half-way, and

~f = 2(1 − t

T
)(1 + δ)(

3

4
î) + (2

t

T
− 1)̂i,

for the next half-way. T here is the time takes for the ray to cross cell 1. Time
integration to t = T gives us

xT =
1

2
−

√
3

2
T +

T 2

3
+

3

16
δT 2 = x0 = 0,

uT = −
√

3

2
+

3

4
T +

3

8
δT.

At xT = 0 because the potential V0 = 1/2, one has to have uT = 0 to satisfy
energy conservation, thus

T = (
√

13 − 3)
√

3 = 1.048846,

δ =
22 − 6

√
13

3(
√

13 − 3)
= 0.20185.

Because at x = x0 = 0, u = 0 there fore the location is the turning point
and the later half ray-path exactly reverse the first half. Therefore the total
time for the ray to travel through cell 1 is texit = 2T = 2.097691. Then the
total time for the ray to travel through the potential field will be ttotal =
0.523653 + 2.097691 + 0.523653 = 3.144997. Compared to the exact solution
ttotal = π, the relative error is only 0.1%.

The above derivations are for the proposed new method for a pair of cells.

COMPARISON BETWEEN THE NEW METHOD AND THE KAISER’S

METHOD

The comparisons between the methods are explicitly listed in numbers in this
section. For energy disposition, the time it takes for a ray to travel through a
cell is important. Table 1 and 2 show the results of the travel time calculated
for the cases with a single cell; and with a pair of cells. The location of the
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turning point indicates how close the numerical ray-traces are to the exact
solution in geometry. For the case of a single cell, formulas can be given; for
the case of double cells, the location of turning point is shown in table 3. Plots
of ray-traces are also provided.

In the case of a single cell, the relative time error to the exact solution cal-
culated with different methods varying entering velocities are shown in the
following table

a (T, E)Kaiser (T, E)new Texact

1/4 (1, 314%) (3.414602, 10.2 %) 3.141593

1/2 (2, 157%) (3.414602, 10.2 %) 3.141593

3/4 (3, 4.7%) (3.414602, 10.2 %) 3.141593

1 (4, 27.3%) (3.165160, 0.75%) 3.141593

Table 1. Travel time through a single cell.

Formula with each method for the x-coordinate of the turning point with a
single cell is the follows: (1 − a2) (Kaiser); (1 − 1.154701a) (new method, for
a <

√
3/2); and (1 − a) (exact).

In the case of a pair of cells, the ray travel-time and its relative error to the
exact solution, varying entering velocities is shown in the following table

a (T, E)Kaiser (T, E)new Texact

1/4 (2, 157%) (3.464102, 10.2 %) 3.141593

1/2 (4, 27.3%) (3.165152, 0.75 %) 3.141593

3/4 (2.88366, 8.9%) (3.225329, 2.7 %) 3.141593

1 (3.381198, 7.6%) (3.144997, 0.1%) 3.141593

Table 2. Travel time through double cells.

The position of the turning point in the case of a single cell is listed in the
following table

The ray traces calculated from Kaiser’s method, the new method, and the
exact solutions with two cells are plotted in fig.5 through fig.9.
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a (xturn, error)Kaiser (xturn, error)new xturn
exact

1/4 (0.875, 16.7%) (0.711325, 5.1 %) 3/4

1/2 (0.5, 0%) (0.5, 0%) 1/2

3/4 (0.291667, 16.7%) (0.233333, 6.7 %) 1/4

1 (0, NA) (0, NA) 0

Table 3. Location of turning point with double cells.

CONCLUSION

The proposed new ray-tracing method, takes the energy conservation on cell
boundary in account, provides a much more accurate solution compared to the
bench-mark Kaiser’s method. A continuous potential field is constructed with
smooth interpolation of boundary potential values. This continuity allows us
to avoid using the Snell’s law on cell boundaries thus eliminates the reflect-
ing/splitting when a ray passed cell boundaries. Although we demonstrated
the advantage of the new method with only one-dimensional cells, there is
no obstacle in sight to generate the method to higher dimension problems.
Because the field in interpolated in time with boundary values, the continuity
of force across multi-dimensional cell boundaries is again insured.

We conclude that the proposed new method has advantages over the Kaiser’s
method in providing quality solution of a ray-tracing problem in general.

ACKNOWLEDGMENTS

The author wishes to thank Richard Sharp of Lawrence Livermore National
Laboratory for his guidance. The author also appreciates discussion with Bob
Tipton at LLNL on the subject matter with this paper.

This work was performed under the auspices of the U.S. Department of Energy
by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

References

[1] Thomas B. Kaiser, Laser ray tracing and power deposition on an unstructured
three-dimensional grid, Phys. Rev. E 61, 895, January 2000.

24


